Learning synthetic biology techniques in Denmark – Johnston Post Doc Fund report

Learning synthetic biology techniques in Denmark – Johnston Post Doc Fund report

Guest post by Dr Hannah McCue, postdoctoral researcher at the Institute of Integrative Biology

With the help of IIB’s Johnston Postdoctoral Development Fund, I was able to visit a world-leading lab in Denmark in order to enhance my knowledge of advanced synthetic biology techniques. Prof Mortensen’s lab is situated at the technical University of Denmark (DTU) located in Lyngby, just outside central Copenhagen. The Johnston Fund kindly covered costs for my travel and AirBnB accommodation close to the DTU, giving me almost two weeks to experience life working at the DTU and learning novel molecular biology techniques.

The key aim of my trip was to learn the ‘tricks of the trade’ of Uracil-Specific Excision Regent (USER) cloning, a technique which multiple scientists at the university have struggled to utilise. In principle, USER cloning should be a straight forward one-pot cloning reaction which holds several advantages over other traditional and more modern cloning methods. Specifically, USER cloning utilises a ligation-free protocol, generates highly specific sticky ends and does not rely on the presence of restriction enzyme recognition sequences. The premise of USER cloning is that by incorporating a single deoxyuracil around 8-12 bases from the 5’ end of each primer, highly specific and long sticky ends can be created on the resulting PCR product with the USER enzyme mix. USER enzyme contains uracil DNA glycosidase (UNG) which excises uracil nucleotides from PCR products and DNA glycosylase-lyase endo VIII which releases the sequence upstream of the uracil nucleotide. The overhangs created are sufficiently long that DNA assembled into a circular plasmid is suitably stable to be transformed into bacteria without prior ligation.

My visit to Prof Mortensen’s lab gave me hands on experience of USER cloning alongside established experts in the field of cell factory construction and engineering. Whereas my expertise lies mainly with the use of bacteria for the production of heterologous proteins and secondary metabolite pathways, Prof Mortensen’s lab focuses on yeast and fungi such as Aspergillus. The main focus of the lab is the discovery of valuable products from fungi and the development of optimal cell factories for their production. To this end, they use CRISPR technology both to insert gene pathways into the organism of interest and to regulate the pathway to give optimal output of the desired molecule.

I was lucky enough to work alongside Dr Katherina Vanegas Garcia who developed “SWITCH” and “TAPE” techniques to help speed up strain construction when developing yeast cell factories. Using these techniques strains can be generated that can iteratively switch between a genetic engineering and a pathway control state. For instance a multi-gene pathway can be inserted into an innocuous location in the genome of the desired strain using Cas9 nuclease in genetic engineering mode. Subsequently the cell factory can be switched into the pathway control state using a dCas9 mutant to up or down regulate different genes in the pathway and monitor the effects to optimise final product yield. She also helped developed a Technique to Assess Protospacer Efficiency (TAPE) whereby the efficiency of particular sgRNA protospacer sequences are assessed for their efficiency to target Cas9 to genomic DNA and cause double strand breaks. The principle is that double strand breaks are lethal in yeast and therefore the efficiency of a protospacer sequence should be reflected in the survival rate of transformants in the absence of a repair template. This technique is also applicable in Aspergillus nidulans NID1 strain which is deficient for non-homologous end joining and hence double strand breaks will also be lethal in this strain.

I designed two experiments to test the application of USER cloning for future use in GeneMill. The first was to assemble 5 stretches of DNA encoding an operon of 13 genes and spanning almost 14 kilobases. USER overhangs were designed to assemble these genes into a USER backbone developed by Dr Vanegas Garcia. Unfortunately, a plasmid encoding all 13 genes was not obtained from these experiments, however, staff and students at the DTU have succeeded in cloning large gene constructs in this manner. Presumably there is an issue with the specific DNA sequence used in this construct which has also proved problematic when using other cloning techniques in the past.

The second experiment was to clone three sgRNA protospacer sequences into a USER backbone designed for CRISPR in Aspergillus nidulans. This cloning was successful on the first attempt and subsequently I was able to carry out CRISPR TAPE experiments to assess the efficiency of targeting of the protospacer sequences to my gene of interest in A. nidulans. All three sgRNA constructs were lethal in NID1 strain when compared to the control transformation showing that all three protospacer sequences were highly efficient. In parallel, I also transformed each sgRNA along with a repair oligo to insert single amino acid changes in my gene of interest. Unfortunately, all three transformants were extremely sick with only one colony from one sgRNA proving viable. This could indicate either that the mutations encoded by the rescue oligos were also lethal or repair using the rescue oligo was not achieved. Without viable transformants to PCR from this is difficult to check. Instead I plan to design oligos encoding silent mutations in the hope that I will then obtain viable transformants.

In summary, my visit to the DTU gave me the opportunity to test USER cloning in both challenging and simple applications. I was also able to conduct a series of CRISPR experiments in A. nidulans, an organism with which I had no prior experience. In addition to receiving hands-on training in the lab, I was given the opportunity to speak to members of different research groups and attend a number of research seminars during my stay. Research areas ranged from discovery of novel antibiotics in fungi to pleasant smelling moss that can be used as an alternative to air freshener! Of particular interest was the Diversify project which is a huge collaboration between many different researchers at the DTU and industrial partners Novozymes and Novo Nordisk. This project aims to take hundreds of yeast and fungal strains and adapt them for the aforementioned SWITCH technique by identifying innocuous sites for heterologous pathway integration. These strains can then be rapidly screened for optimal production of desired metabolites. Ambitious, high throughput, multi-partner, synthetic biology challenges such as this have the ability to change the wider approach to industrial biotechnology enabling sufficient production of useful or valuable compounds that would otherwise be ignored due to underperforming host strains.

I have been extremely privileged to have been selected for receipt of the Johnston Fund and as a consequence I have obtained invaluable experience of how another synthetic biology-focused research lab works. I have renewed enthusiasm that synthetic biology can revolutionise biological research and has the potential to have a significant impact on how we think about the future of industrial biotechnology. Not only am I now equipped to teach and supervise students and colleagues about how to utilise USER cloning, the visit to Denmark has given me a wider perspective on how to approach various industrial projects with which I am involved. I therefore believe that the experience has greatly enhanced my professional development and will aid my productivity across all aspects of my work.

My experience of the Aurora Leadership Programme

by Klara Wanelik

In March this year I embarked on a leadership training course for women in higher education, called the Aurora Leadership Programme. You might be thinking, why would I go on a course like this? Well, as an early career researcher (ECR) in this sector, I am very concerned by statistics like this:

“The proportion of female students (55%) and graduates (59%) in the EU exceeds that of male students, but women represent only 18% of grade A (professorial) academic staff”1

The aim of Aurora is to take positive action to address this under-representation of women in leadership positions in the higher education sector.

I attended four development days at the Royal Armouries Museum in Leeds (quite appropriate really!) and met hundreds of women from the higher education sector. It has taken me a while to digest all of this but I think I am finally starting to see the light at the end of the tunnel. I include some of my thoughts in this blog post with the hope of inspiring other female ECRs, and more generally inspiring others, to start questioning what it means to be a good a leader. I focus on two aspects of the programme that I found particularly useful. This choice is personal, and I’m sure that other women attending the programme would choose differently. But here goes…

Exploring core values

In one of the sessions, we were given a list of universal human values and asked to circle those that were most important to us: our ‘core values’. At the end of the session, each group pooled their results together on a kind of ‘value map’, where values were grouped under terms like universalism, benevolence and power. What I found particularly striking was that our table had circled lots of values in the former two groups (like equality, honesty and loyalty) but the power section of the map (with words like social recognition, public image and authority) was completely empty. And it wasn’t just our table, a colleague of mine who attended the programme in London, told me the same happened there.

How could this be? How could these women who had come together for the sole purpose of developing their leadership skills (some of them already in senior leadership positions) not feel that they identified with any of these values? There are two possible answers: 1) they didn’t feel comfortable sharing these values, or 2) they genuinely didn’t prioritise them. Given the spirit of openness that Aurora encourages, I assume that the second answer is the most likely. This isn’t a gender-specific phenomenon – we heard that men in leadership positions who completed this activity also highlighted the non-power-related values. This, I think, calls into question what we think a leader should be. Many of us still hang on to a traditional view of a leader being a dominating individual, with full authority, who is driven to do what he/she does for the recognition, wealth and/or the power they receive in return. This is a view we really need to shift. By doing this activity, we were being encouraged to consider the individuality of leadership and the importance of authenticity; staying true to your values, while leading. As one of the facilitators suggested, the best leaders are those that create the next generation of leaders. I think this is perhaps a more useful (and interesting) view of leadership than the traditional one.

Importance of storytelling and leading with “why”

In another session we learnt about the importance of storytelling in leadership. This sounded a bit odd to me at first, I’d never really put the two together but then I got talking to a woman on my table who proceeded to tell me about some charity work she was doing, somewhat connected to her work as a lawyer. The way she created a narrative about the people she was helping and what she was doing to help them captured my attention. I wanted to sign up straight away, even though I would have been of very little help (I’m a biologist not a lawyer!) It was at this moment though, when she was masterfully telling her story, that I realised how powerful storytelling could be in getting people to do what you want them to do.

The tables were turned on another occasion, after I watched a TED talk by Simon Sinek, which was recommended as part of the pre-work for an Aurora session. In his talk, Simon Sinek talks about inspiring action by leading with why we’re doing something, rather than how or what exactly we’re doing: “people don’t buy what we do, they buy why we do it”. Soon after watching this talk I had the opportunity to re-formulate my ‘elevator pitch’ about the research that I do. There is a real diversity of women on the Aurora programme, from professional services to academics, and from all different fields. On this occasion, I happened to be sat next to (another) lawyer, and to be honest, I was pretty sceptical about being able to really (genuinely) get her on board. To my surprise, my pitch did get her genuinely excited about my research and asking multiple questions. I still remember the look on her face! I’ll be trying my best to lead with “why” from now on.

Thank you

I would like to thank IIB for funding my place on the Aurora programme, all the inspirational women I met during my time on Aurora and my colleagues in IIB for supporting me along the way. Special thanks to Zen Lewis, who provided much needed encouragement and support and pushed me to re-apply for Aurora after I was initially unsuccessful in securing a place.

If you are a female ECR like me, I hope this post will encourage you to give the Aurora programme a go and to start thinking of yourself as a leader!

  1. Morley, L (2013) Women and Higher Education: Absences and Aspiration

Learning to Communicate – a Johnston Post-Doctoral Development Fund report

This is a guest post by Andrew Holmes, Postdoctoral Research Associate in the Mammalian Behaviour & Evolution group of the Institute of Integrative Biology.

 

The Johnston Post-Doctoral Development Fund enabled me to attend a Royal Society residential course in in communication and media skills in June 2017. The course was hosted at the Kavli Royal Society International Centre at Chicheley Hall in Buckinghamshire, a Grade I listed 18th century mansion set in 80 acres of beautiful grounds that has been used in films such as Pride and Prejudice and The Meaning of Life. Hidden amongst the trees near the house lurk two large fiberglass pterodactyls from an earlier Royal Society event, now abandoned and eerily weather-beaten.

Andrew1.pngImage: Chicheley Hall and gardens (left); Pterodactyls amongst the trees (right).

The course was run by Dr Jon Copley, an Associate Professor at the University of Southampton and former reporter and editor at New Scientist, and Geoff Marsh, a freelance multimedia producer and science writer for publications including Nature. It was great to ask them about their own experiences in science communication, in particular Dr Copley was able to provide insight into his experiences working with the BBC on nature documentaries.

In the first half of the course we discussed and practiced how to write short popular science articles, using the ‘inverted triangle’ approach to present what was most important in a concise and engaging starting paragraph and then going into more details as the article continued. This approach is great for communicating to non-specialist audiences as well as in the lay summary sections of grant proposals.

We also covered writing press releases, long-form science writing and using social media. I have recently started my own website (https://thescikuproject.com) using scientific haiku to explore research findings. I have very little experience of using social media and the course has given me the confidence to start using it to promote my own website and research.

Andrew2Image: Andrew Holmes (left); Chicheley Hall Gardens (centre); a resident of Chicheley Hall (right).

The second half of the course covered the media and science, discussing the differences in function, requirement and audience expectations between media types – radio, tv, print and online reporting. By learning how the media works and the requirements of journalists we were able to understand how to interact with the media and retain more guidance of how our work is reported.

We also practiced being interviewed: a ‘soft’ radio interview; a ‘hard’ radio interview with probing questions about the ethical and societal issues associated with our work; and a TV interview via a remote link. Discussing our work in different contexts and having an awareness of the practical requirements of media production has helped me feel more confident about interacting with the media and promoting my work to the public in general.

I felt the course was excellently run and covered some very interesting and useful topics that as scientists we aren’t often trained to consider. By learning how better to present my research to a variety of audiences and through a number of formats I feel much better prepared to use my communication skills to help improve the impact of my research and promote my science to the world outside of academia.

I thank the Johnston Post-Doctoral Development Fund committee for this opportunity and hope they feel that it was justified – I certainly feel that I gained a lot from it.